Plotting Grouped Series¶
Here there are the classes that plot grouped series
-
class
plotszoo.series.grouped.GroupedSeriesParade(data, groups, target)¶ Plot grouped mean series and their confidence intervals. Useful when working with stochastic processes. This plot requires both scalars and series and requires aligned series
- Args:
- data
plotszoo.data.DataCollectionwith some series- groups
A list of scalar indices to group by
- target
The series index to plot to
Example:
import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import plotszoo np.random.seed(0) num_series = 10 samples = 100 noise_level = 0.8 x = np.linspace(0, np.pi*2, samples) types = [] series = {} for _ in range(0, num_series): noisy_sin = np.sin(x) + np.random.rand(samples)*noise_level series[len(types)] = pd.DataFrame(noisy_sin, columns=["value"]) types.append("sin") noisy_cos = np.cos(x) + np.random.rand(samples)*noise_level series[len(types)] = pd.DataFrame(noisy_cos, columns=["value"]) types.append("cos") data = plotszoo.data.DataCollection() data.set_scalars(pd.DataFrame(types, columns=["type"])) data.set_series(series) fig, ax = plt.subplots() series_parade = plotszoo.series.grouped.GroupedSeriesParade(data, ["type"], "value") series_parade.plot(ax) ax.legend(loc="lower right") fig.savefig(os.path.join(os.path.dirname(os.path.realpath(__file__)), "images/GroupedSeriesParade.png"))
-
plot(ax, cmap='tab10', normalize_color=False, alpha=0.5, goal=None, goal_type='max')¶ Plot the grouped series parade
- Args:
- ax
matplotlibaxes to plot to- cmap
matplotlibcolormap to use (Default:tab10)- normalize_color
Call
matplotlibbefore using colormap (Default:False)- alpha
Alpha for the confidence intervals area
- goal
Stop plotting after a certain goal is reached for each series (Default
None)- goal_type
The goal type (
maxormin)